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Parkinson’s disease has a large heritable component and genome-wide association studies have identied over 90 
variants with disease-associated common variants, providing deeper insights into the disease biology. However, 
there have not been large-scale rare variant analyses or Parkinson’s disease.
To address this gap, we investigated the rare genetic component o Parkinson’s disease at minor allele requencies 
<1%, using whole genome and whole exome sequencing data rom 7184 Parkinson’s disease cases, 6701 proxy cases 
and 51 650 healthy controls rom the Accelerating Medicines Partnership Parkinson’s disease (AMP-PD) initiative, the 
National Institutes o Health, the UK Biobank and Genentech. We perormed burden tests meta-analyses on small 
indels and single nucleotide protein-altering variants, prioritized based on their predicted unctional impact.
Our work identied several genes reaching exome-wide signicance. Two o these genes, GBA1 and LRRK2, have var-
iants that have been previously implicated as risk actors or Parkinson’s disease, with some variants in LRRK2 result-
ing in monogenic orms o the disease. We identiy potential novel risk associations or variants in B3GNT3, AUNIP, 
ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independ-
ent datasets. O these, B3GNT3 and TREML1 could provide new evidence or the role o neuroinfammation in 
Parkinson’s disease. To date, this is the largest analysis o rare genetic variants in Parkinson’s disease.
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Introduction
Parkinson’s disease (PD) is a complex neurological disease likely 
caused by an interplay between ageing, environmental actors 
and genetics. While the role o common genetic variants in PD 
has been extensively studied using large genome-wide association 
studies (GWAS), rare variants can also contribute to amilial and 
sporadic disease. To date, over 90 independent risk signals have 
been associated with PD, including common variants in close prox-
imity to SNCA, TMEM175 and MAPT.1,2 Most o the risk alleles ound 
by array-based GWAS have requencies over 5% in the population o 
interest, oten reside in non-coding regions o the genome, and typ-
ically have small eect sizes. In contrast, rare damaging and patho-
genic variants implicated in PD, such as coding variants in SNCA3

and PRKN,4 have traditionally been identied using amily-based 
approaches. One aspect o major interest in disease genetics is 
the large number o pleomorphic genes, where multiple variants 
o varying allele requency present with a wide range o eect
sizes.5 For example, in PD, GWAS identied common variants 
with moderate eects near GBA1, GCH1, LRRK2, SNCA and 
VPS13C,1 while amilial studies identied rare variants in the 
same genes resulting in more damaging eects (e.g. LRRK2 
p.G2019S and SNCA p.A53T).6–9

In contrast to common variants, there have been no large-scale 
eorts investigating the role o rare variants in PD on a genome- 
wide scale. Although rare variant associations or several PD genes 
(such as ARSA and ATP10B) have been reported in candidate gene 
studies,10,11 these genes remain controversial due to lack o replica-
tion in independent PD datasets.12–15 One o the main challenges 

that comes with analysing rare variants is that the quality and reli-
ability o imputation procedures decreases with allele requency. 
Since genome-wide genotyping methods are currently much 
cheaper than sequencing, most large datasets used or GWAS rely 
on imputed genotype data. A strength o the present study is that 
we ocused on using whole genome (WGS) and whole exome se-
quencing (WES) to acilitate the analysis o rare variants. We per-
ormed the largest genome-wide analysis o rare variants in PD to 
date, investigating 7184 PD cases, 6701 proxy cases (dened as hav-
ing a parent or sibling with PD) and 51 650 neurologically healthy 
controls o European ancestry rom several large sequencing e-
orts. Using these data, we executed gene-level burden testing in or-
der to understand how moderate- to large-eect rare variants 
contribute to the genetic aetiology o PD.

Materials and methods
Accelerating Medicines Partnership in Parkinson’s 
Disease and National Institutes o Health genome 
sequencing data

Whole genome sequencing data was obtained rom multiple data-
sets including the Parkinson’s Progression Markers Initiative 
(PPMI), the Parkinson’s Disease Biomarkers Program (PDBP) and 
the Harvard Biomarker Study (HBS), BioFIND, SURE-PD3 and 
STEADY-PD3 as part o the Accelerating Medicines Partnership in 
Parkinson’s Disease (AMP-PD) initiative. Several other datasets 
were sequenced in parallel at the Laboratory o Neurogenetics 
(LNG) and the US Uniormed Services University (USHUS), including 
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samples rom the National Institutes o Health (NIH) PD clinic, the 
United Kingdom Brain Expression Consortium (UKBEC),16 the
North American Brain Expression Consortium (NABEC)17 and 
Wellderly.18 All cohorts rom AMP-PD (PPMI, PDBP, HBS, BioFIND, 
SURE-PD3 and STEADY-PD3) were processed using the Genome 
Analysis Toolkit (GATK) Best Practices guidelines set by the Broad 
Institute’s joint discovery pipeline and elaborated on elsewhere.19

All other cohorts were joint called separate rom AMP-PD but in a 
similar manner, also rom the processed WGS data ollowing the 
GATK Best Practices using the Broad Institute’s workfow or joint 
discovery and Variant Quality Score Recalibration (VQSR).20 Data 
processing and quality control (QC) procedures have been de-
scribed previously.19,21 Reported elsewhere, these sequencing me-
trics had a median/mean coverage between 33.3× and 35.0×.19

Additional quality control was perormed to exclude closely related 
individuals (PI_HAT >0.125) by selecting one sample at random 
using PLINK (v1.922). All individuals were o European ancestry as 
conrmed by principal component analysis using HapMap3 
European ancestry populations. Individuals recruited as part o a 
biased and/or genetic dataset, such as LRRK2 and GBA1 variant car-
riers within a specic eort o PPMI, were excluded rom this ana-
lysis. Including all variants within the gene boundaries, a 
minimum allele count (MAC) threshold o 1 was applied. Exonic re-
gions were subset rom the whole genome sequencing data using 
the exome calling regions rom gnomAD lited over to hg38.23

UK Biobank

Exome sequencing data rom a total o 200 643 individuals (OQFE 
dataset, eld codes: 23151 and 23155) were downloaded rom the 
UK Biobank in December o 2020.24 As described elsewhere, the 
UK Biobank Exome Sequencing Consortium sequenced these 
exomes with 95.8% o targeted bases covered at a depth o 20× or 
higher.25 Standard quality control was perormed to exclude 
non-European outliers. Closely related individuals (PI_HAT 
>0.125) were excluded by selecting one sample at random using 
PLINK (v1.922). Standard exome sequencing data ltering was ap-
plied using suggested parameters as described in previous UK 
Biobank exome sequencing studies.25

UK Biobank phenotype data were obtained rom ICD10 codes 
(eld code: 41270), PD (eld code: 131023), illnesses o ather and 
mother (eld codes: 20107 and 20110), parkinsonism (eld code: 
42031) or dementia (eld code: 42018), genetic ethnic grouping (eld 
code: 22006), year o birth (eld code: 34) and age o recruitment 
(eld code: 21022). Cases were dened as any individual identied 
as having PD using the above eld code. Proxy cases were dened 
as having a parent or sibling with PD as previously reported.1

Controls were ltered to exclude any individuals with an age o re-
cruitment <59 years, any reported nervous system disorders 
(Category 2406), a parent with PD or dementia (eld codes: 20107 
and 20110) and any reported neurological disorder (eld codes: de-
mentia/42018, vascular dementia/42022, rontotemporal dementia/ 
42024, amyotrophic lateral sclerosis/42028, parkinsonism/42030, 
Parkinson’s disease/42032, progressive supranuclear palsy/42034, 
multiple system atrophy/42036).

Genentech

Whole genome sequencing data rom Genentech included a total o 
2710 PD cases and 8994 individuals used as controls. Cases o PD in-
cluded 2318 individuals rom 23andMe, a subset o those included 
in the analysis by Chang and colleagues26 who were contacted and 

provided consent or this analysis. An additional 392 PD cases were 
obtained rom the Roche clinical trial TASMAR. Individuals included 
as controls were obtained rom various Genentech clinical trials/stud-
ies and included cases or our diseases that do not share notable her-
itability with PD: age-related macular degeneration (n = 1735), asthma 
(n = 3398), idiopathic pulmonary brosis (n = 1532) and rheumatoid 
arthritis (n = 2329). Illumina HiSeq based 30× genome sequencing 
was perormed on all samples using 150 bp paired-end reads. 
Genotypes with a genotype quality (GQ) < 20 were labelled as missing. 
The reads were then mapped to the GRCh38 reerence genome with 
the Burrows–Wheeler Aligner (BWA),27 ollowed by application o 
GATK27,28 or base quality score recalibration, indel realignment and 
duplicate removal. This was ollowed by single nucleotide poly-
morphism (SNP) and insertion/deletion (indel) discovery and geno-
typing across all samples simultaneously using variant quality 
score recalibration according to GATK Best Practices recommenda-
tions.29–31 The 11 704 samples included in these analyses passed the 
ollowing QC steps: genotype missing rate < 0.1, no sample pair had 
kinship coecient (k0, i.e. probability o zero alleles shared 
identical-by-descent; or the value Z0 reported by PLINK’s–genome 
module) < 0.4; and no sample was an outlier in ve iterations o out-
lier removal using principal component analysis (PCA).32

Variant annotation

Variants were annotated using the SnpE and SnpSit annotation 
sotwares (v4.3t33) as well as the Ensembl Variant Eect Predictor 
(VEP; v10434) package. Both the Combined Annotation Dependent 
Depletion (CADD; v1.435) and the Loss-o-Function (LoF) 
Transcript Eect Estimator (LOFTEE; v1.0223) VEP plugins were 
used. SnpE is a toolbox based on 38 000 genomes that is designed 
to annotate genetic variants and predict their downstream unc-
tional consequences. SnpSit leverages multiple databases to lter 
SnpE outputs and prioritize variants, and can predict amino acid 
changes as having ‘moderate’ or ‘high’ impact. The CADD plugin 
or VEP is a tool used to score the deleteriousness o single nucleo-
tide variants, insertions and deletions. A CADD Phred score is a 
scaled measure o deleteriousness, with a score o 20 indicating
that the variant is among the top 1% o deleterious variants in the 
genome.35 The LOFTEE plugin or VEP is uniquely designed to assess 
stop-gain, rameshit and splice-site disrupting variants and clas-
siy these as LoF with either low or high condence. The ollowing 
variant classes were used or gene burden analyses: (i) missense 
variants as dened by SnpE; (ii) moderate or high impact variants 
as dened by SnpE/SnpSit; (iii) high condence LoF variants as 
dened by LOFTEE; and (iv) variants with either a CADD Phred score 
>20 or high condence LoF variants as dened by LOFTEE.

Gene burden analysis and meta-analysis

The AMP-PD and NIH datasets were merged prior to gene burden 
analysis, with 3848 duplicates removed prior to analysis. Rare vari-
ant testing or this merged dataset, the UK Biobank case–control da-
taset, and the UK Biobank proxy control datasets were perormed 
using the Sequence Kernel Association Test–Optimal (SKAT-O) 
and the Combined and Multivariate Collapsing (CMC) Wald algo-
rithms.36,37 These algorithms were run using the RVtests package 
(v2.1.038). The CMC Wald test collapses and combines all rare var-
iants and then perorms a Wald test, where only an alternative 
model is t and the eect size is estimated.39 SKAT-O is an opti-
mized sequencing kernel association test designed to combat lim-
itations introduced by the SKAT and burden tests. SKAT-O 
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aggregates the associations between variants and the phenotype o 
interest while allowing or SNP–SNP interactions and has been pro-
ven to detect genes more reliably than a burden or SKAT test separ-
ately by adaptively selecting the best linear combination o both 
SKAT and burden tests to maximize test power.40 All analyses 
were stratied by the our variant classes described above and by 
maximum minor allele requencies (MAF) levels o 1% and 0.1%. 
For Genentech data, SKAT-O and CMC-Wald tests were perormed 
using the R package SKAT.41

The combined AMP-PD and NIH dataset was adjusted or sex, 
age and the rst ve principal components. The UK Biobank data-
sets were adjusted or sex, Townsend scores and the rst ve prin-
cipal components. For the UK Biobank analyses, only neurologically 
healthy controls 60 years and older were included in analyses, and 
thereore age was not included as a covariate. Meta-analyses o the 
resulting summary statistics per gene were perormed using cus-
tom Python (v3.7) scripts, which we have made available on our 
GitHub (https://github.com/neurogenetics/PD-BURDEN). In sum-
mary, the two meta-analysis approaches used in this study were: 
(i) a combined P-value approach using Fisher’s test; and (ii) a 
weighted Z-score approach. In previous studies, Fisher’s method 
was reported to detect >75% o causal eects (either deleterious 
or protective) that are in the same direction.42 Unless otherwise sta-
ted, all results reported in this manuscript correspond to the 
SKAT-O rare variant test, and all meta-analyses were perormed 
using the combined P-values reported ollowing Fisher’s test.

Rare variant analyses were perormed on each dataset separate-
ly and all data is using genome build hg38. Two joint meta-analyses 
were perormed as ollows: (i) a case-control meta-analysis be-
tween the combined AMP-PD and NIH dataset, the Genentech data-
set and the UK Biobank case-control dataset; and (ii) a 
meta-analysis o the case-control and proxy control results rom 
the combined AMP-PD and NIH dataset, the Genentech dataset, 
the UK Biobank PD case-control dataset, the UK Biobank sibling 

proxy cases dataset and the UK Biobank parent proxy cases dataset. 
A summary o the analysis workfow is outlined in Fig. 1.

Power calculations

One hundred gene simulations were run using the power calcula-
tion unction with deault European haplotypes made available in 
the SKAT R package (v2.0.140). The total sample size was estimated 
at 65 535, with 7184 PD cases, 6701 proxy cases down-weighted to 
one-ourth o a PD case (corresponding to 1675 cases), and 51 650 
controls resulting in a case proportion o 13.5%. We estimated the 
disease prevalence o PD at 1% as previously estimated43 and 
used an exome-wide signicance threshold calculated by assuming 
20 000 protein-coding genes, resulting in a Bonerroni correction o 
2.50 × 10−6. Since we used two dierent algorithms or burden testing, 
we set the nal threshold o signicance to 1 × 10−6. Power calcula-
tions based on varying percentages o causality (10%, 5%, 3%, 1% 
and 0.5%) and causal MAF (0.05%, 0.1%, 0.5%, 1%, 3% and 5%) are re-
ported in Supplementary Table 5. Assuming at least 3% o the rare al-
leles tested are causal, this analysis has ≥80% power to detect 
associations at the tested MAF cut-os (Supplementary Table 5).

Results
Study overview

A total o 7184 PD cases, 6701 sibling/parent proxy cases and 51 650 
controls with whole genome (AMP-PD, NIH and Genentech) or 
exome (UK Biobank) sequencing were included in this analysis 
(Table 1). Rare variant gene-level burden tests were perormed 
across all genes or our variant classes and two MAF cut-os 
(Fig. 1). As expected, we observed that more deleterious variant 
classes resulted in ewer variants tested per gene. For a ull over-
view o the requency and number o variants within each gene 

Figure 1 Graphical representation o the analysis workow. (1) Annotation was perormed using Variant Eect Predictor (VEP) and our variant groups were 
selected: (i) missense variants as dened by SnpE; (ii) moderate or high impact variants as dened by SnpE/SnpSit; (iii) high condence Loss-o-Function 
(LoF) variants as dened by LOFTEE; and (iv) variants with either a CADD Phred score >20 or high condence LoF variants as dened by LOFTEE. (2) Burden 
analysis was perormed on each dataset separately at rare (minor allele requency, MAF < 1%) and ultra-rare (MAF < 0.1%) cut-os. (3) Meta-analysis Strategy 
1 using only Parkinson’s disease (PD) cases and controls, otherwise reerred to as the ‘case-control’ meta-analysis. (4) Meta-analysis Strategy 2 using PD 
cases, PD proxy cases (siblings and parent) and controls, otherwise reerred to as the ‘case-control-proxies’ meta-analysis. UKB = UK Biobank.
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in cases and controls, stratied by variant class and cohort (exclud-
ing Genentech), see Supplementary Tables 11–14.

Genetic burden testing in large Parkinson’s disease 
case–control datasets

Initial gene burden analyses per dataset (AMP-PD and NIH 
Genomes, Genentech, UK Biobank cases, UK Biobank sibling prox-
ies and UK Biobank parent proxies) resulted in several known PD 
genes (e.g. GBA1 and LRRK2) reaching signicance exome-wide 
(P < 1 × 10−6; Tables 2 and 3 and Supplementary Tables 15 and 16), 
conrming the validity o our approach. Lambda values per dataset 
showed minimal genomic infation when adjusted or the number 
o cases, proxy cases and controls (λ1000; Supplementary Table 3). As 
expected, datasets with smaller sample sizes, such as the UK 
Biobank sibling proxy control dataset, resulted in increased genom-
ic defation when analysed separately (λ1000 < 0.9).

Rare variant burden analysis o both GBA1 and LRRK2 reached sig-
nicance exome-wide in the initial analysis o missense, moderate/ 
high impact, and LoF or highly deleterious (CADD Phred > 20) var-
iants. In our analyses, we ocused on LoF variants to limit the scope 
o burden testing to rare variants that are the most likely to be highly 

deleterious. GBA1 was signicant or these variant categories in both 
the Genentech (P = 1.32 × 10−8, P = 5.70 × 10−8 and P = 6.99 × 10−8,
respectively) and UK Biobank parent proxies (P = 2.15 × 10−10, 
P = 2.15 × 10−10 and 2.15 × 10−10, respectively) datasets. LRRK2 was 
signicant or these categories in the combined AMP-PD and NIH da-
taset (P = 1.96 × 10−7, P = 2.09 × 10−7 and P = 2.23 × 10−7, respectively); 
note that the ‘LRRK2 LoF variants only’ variant class was not signi-
cant, which is in line with previously reported data.44 LoF variants 
in B3GNT3 were signicant exome-wide in the Genentech dataset 
(P = 4.40 × 10−9) and replicated at nominal signicance in the UK 
Biobank parent proxies dataset [P = 0.032; Supplementary Figs 3–9
or Genentech (hg38: chr19:17807816:T:G; chr19:17807816:T:G; 
chr19:17807816:T:G) and UK Biobank (hg38: chr19:17807982:GC:G; 
chr19:17808033:C:T; chr19:17812105:C:CA)]. Moderate and high im-
pact variants in TUBA1B were signicant in the UK Biobank parent 
proxies dataset (P = 9.48 × 10−7). LoF or highly deleterious variants 
in ADH5 were signicant in the UK Biobank cases-control dataset 
(P = 3.13 × 10−7), and LoF or highly deleterious variants in OR1G1 
were signicant in the UK Biobank sibling proxies dataset (P =  
6.58 × 10−7; Table 2 and Supplementary Table 16).

Ultra-rare variant (MAF < 0.1%) burden analysis o missense, 
moderate/high impact, and LoF or highly deleterious variants in 

Table 1 Datasets overview ater quality control

Dataset Sample size Agea (Mean ± SD) Sex (male; %)

Cases Controls Cases Controls Cases sex
(male; %)

Controls sex 
(male; %)

AMP-PD and NIH Genomes (includes: PPMI, PDBP, 
HBS, BioFIND, NIH PD clinic, UKBEC, NABEC)

3369 4605 62.1 (11.8) 71.9 (16.2) 63.6 47.6

UKB case-control (WES) 1105 5643 62.9 (5.24) 64.1 (2.84) 62.4 47.6
UKB sibling proxy-control (WES) 668b 3463 62.2 (5.59) 64.1 (2.83) 45.5 49.5
UKB parent proxy-control (WES) 6033b 28 945 58.1 (7.23) 64.1 (2.82) 42.5 48.7
Genentech case-control (WGS) 2710 8994 64.7 (10.4) 59.2 (15.6) 59.2 40.7
Total 7184 cases; 

6701 proxies
51 650 

controls
– – – –

AMP-PD = Accelerating Medicines Partnership Parkinson’s disease; HBS = Harvard Biomarker Study; NABEC = North American Brain Expression Consortium; NIH = National 

Institutes o Health; PDBP = Parkinson’s disease Biomarkers Project; PPMI = Parkinson’s Progression Markers Initiative; UKB = UK Biobank; UKBEC = UK Brain Expression 

Consortium; WES = whole-exome sequences; WGS = whole-genome sequences. 
aAge or AMP-PD and NIH datasets reported at recruitment or baseline, ages reported or UK Biobank datasets at recruitment, ages reported or Genentech at recruitment. 
bIndicates proxy cases.

Table 2 Genes reaching exome-wide signifcance (P < 1 × 10−6) in MAF <1% in meta-analyses and individual datasets ollowing 
SKAT-O

Variant class 
(MAF <1%)

Gene Case only meta 
P-value

Case proxies 
meta P-value

AMP-PD and 
NIH P-value

GNE 
P-value

UKB case 
P-value

UKB sibling 
P-value

UKB parent 
P-value

Missense GBA1** 3.27 × 10−14 1.46 × 10−21 1.05 × 10−5 1.32 × 10−8 3.14 × 10−4 0.247 2.15 × 10−10

LRRK2* 7.15 × 10−7 9.46 × 10−6 1.96 × 10−7 0.047 0.372 0.615 0.482
Moderate or 

high impact
GBA1** 9.10 × 10−15 1.32 × 10−22 1.05 × 10−5 5.70 × 10−8 1.89 × 10−5 0.073 2.15 × 10−10

LRRK2* 7.23 × 10−7 9.85 × 10−6 2.09 × 10−7 0.040 0.413 0.584 0.527
TUBA1B 0.69 9.02 × 10−5 NA 0.647 0.501 0.352 9.48 × 10−7

LoF B3GNT3** 4.40 × 10−9 3.36 × 10−9 NA 4.40 × 10−9 NA NA 0.032
CAPN10** 3.60 × 10−7 7.84 × 10−7 NA 0.005 3.75 × 10−6 0.053 0.394

CADD > 20 or 
LoF

GBA1** 3.72 × 10−14 9.12 × 10−22 1.24 × 10−5 6.99 × 10−8 5.77 × 10−5 0.130 2.15 × 10−10

LRRK2* 2.49 × 10−7 4.22 × 10−6 2.23 × 10−7 0.012 0.409 0.735 0.485
ADH5 4.62 × 10−6 6.15 × 10−5 0.512 0.170 3.13 × 10−7 0.491 0.768
OR1G1 0.215 6.56 × 10−6 0.848 0.029 0.620 6.58 × 10−7 0.063

AMP-PD = Accelerating Medicines Partnership in Parkinson’s Disease; GNE = Genentech; LoF = loss-o-unction; MAF = minor allele requency; NIH = National Institutes o 

Health; UKB = UK Biobank. 

*Denotes genes that pass exome-wide signicance (P < 1 × 10−6) in one meta-analysis. 

**Denotes genes that pass exome-wide signicance (P < 1 × 10−6) in both meta-analyses.
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GBA1 were signicant exome-wide in the UK Biobank parent proxies 
dataset (P = 6.88 × 10−8, P = 5.13 × 10−10 and P = 7.89 × 10−8, respective-
ly). LoF or highly deleterious variants in GBA1 were also signicant in 
the UK Biobank case-control dataset (P = 4.56 × 10−7). LoF or highly 
deleterious variants in LRRK2 were signicant in the Genentech data-
set (P = 6.15 × 10−7). Moderate/high impact variants in AUNIP were 
signicant in the UK Biobank case-control dataset (P = 3.04 × 10−8) 
and TUBA1B in the UK Biobank parent proxies dataset 
(P = 9.48 × 10−7). LoF variants in B3GNT3 were signicant in the 
Genentech dataset (P = 4.40 × 10−9) and AUNIP in the UK Biobank case- 
control dataset (P = 3.13 × 10−8). LoF or highly deleterious variants in 
AUNIP were signicant in the UK Biobank case-control dataset 
(P = 3.15 × 10−8), and LoF or highly deleterious variants in OR1G1 were 
signicant in the UK Biobank sibling proxies dataset (P = 6.58 × 10−7). 
Ultra-rare variant burden analysis identied no signicant genes 
exome-wide in any o the our variant classes within the AMP-PD 
and NIH genomes (P < 1 × 10−6; Table 3 and Supplementary Table 15).

Meta-analyses o large Parkinson’s disease datasets

The rst meta-analysis (herein called the case-control meta-analysis) 
excluded any UK Biobank proxy cases. The second meta-analysis 
(herein called the case-control-proxies meta-analysis) included UK 
Biobank proxy cases in addition to cases and controls. No signicant 
divergence rom expected lambda values (range: 0.97–1.00) were de-
tected in any o the meta-analyses perormed (Supplementary 
Table 4). Rare variant burden analysis o missense, moderate/high 
impact, and LoF or highly deleterious variants in GBA1 were signi-
cant exome-wide across both meta-analyses (case-control P = 3.27 ×  
10−14, P = 9.10 × 10−15 and P = 3.722 × 10−14, respectively; and 
case-control-proxies P = 1.46 × 10−21, P = 1.32 × 10−22 and P = 9.12 × 10−22, 
respectively). High condence LoF variants in CAPN10 (case-control 
P = 3.60 × 10−7, case-control-proxies P = 7.84 × 10−7) and B3GNT3 
(case-control P = 4.40 × 10−9, case-control-proxies P = 3.36 × 10−9) 
were also signicant exome-wide (Table 2).

Ultra-rare variant burden analysis o moderate/high impact var-
iants and high condence LoF variants in AUNIP were signicant 
exome-wide across both meta-analyses (case-control P = 1.54 ×  
10−8 and P = 1.64 × 10−8, respectively; and case-control-proxies 
P = 2.70 × 10−7 and P = 2.04 × 10−7, respectively). Moderate/high im-
pact variants in TREML1 were signicant with the inclusion o proxy 

cases. As in the rare variant burden analysis, ultra-rare LoF variants 
in CAPN10 (case-control P = 3.60 × 10−7, case-control-proxies
P = 7.84 × 10−7) and B3GNT3 (case-control P = 4.40 × 10−9, case- 
control-proxies P = 3.36 × 10−9) were also signicant. Notably, both 
rare (MAF < 1%) and ultra-rare (MAF < 0.1%) GBA1 variants showed 
signicant associations with PD risk (Tables 2 and 3).

B3GNT3 was identied in the high condence LoF variant class 
group, with P-values o 4.40 × 10−9 in the Genentech dataset and 
P = 0.032 in the UK Biobank parent proxies. However, no variants 
meeting this criteria were present in the AMP-PD and NIH genomes, 
so the association o rare LoF variants in B3GNT3 could not be con-
rmed. The majority o novel candidate genes identied in this 
study (B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and 
TREML1) only reached signicance exome-wide using the SKAT-O 
test (Supplementary Table 7). Full results rom the SKAT-O and 
CMC Wald burden tests perormed or each variant class, MAF cut- 
o, and meta-analysis group can be ound on our GitHub repository 
(https://github.com/neurogenetics/PD-BURDEN).

Conditional LRRK2 analysis

Since LRRK2 p.G2019S is a relatively common risk actor or PD, we 
explored whether the rare variant association at LRRK2 is driven pri-
marily by this variant. For these analyses, LRRK2 p.G2019S status per 
individual was coded as 0, 1 or 2 depending on the allelic dosage, al-
lowing us to condition on LRRK2 p.G2019S status without removing 
carriers. Allelic status was then included as a covariate or the bur-
den analyses. The observed association at LRRK2 was lost (P > 0.05) 
ater conditioning on the allelic status o LRRK2 p.G2019S or all o 
the tested variant categories and MAF thresholds in the discovery 
datasets (excluding Genentech; Supplementary Table 8). Besides 
LRRK2 p.G2019S, no other substantial coding risk in LRRK2 was de-
tected. However, it is important to note that other previously identi-
ed rare coding variants that have been shown to increase risk to PD 
were not detected in this study, including LRRK2 p.R1441H.45

Assessment o previously reported Parkinson’s 
disease causal or high risk genes and GWAS regions

We next assessed a large number o genes that showed rare variant 
associations with PD in previous studies (or a ull list, see 

Table 3 Genes reaching exome-wide signifcance (P < 1 × 10−6) in MAF < 0.1% in meta-analyses and individual datasets ollowing 
SKAT-O

Variant class 
(MAF <1%)

Gene Case only meta 
P-value

Case proxies 
meta P-value

AMP-PD and 
NIH P-value

GNE 
P-value

UKB case 
P-value

UKB sibling 
P-value

UKB parent 
P-value

Missense GBA1* 1.86 × 10−5 4.48 × 10−12 0.022 2.30 × 10−2 2.55 × 10−4 5.41 × 10−3 6.86 × 10−8

Moderate or 
high impact

GBA1* 1.71 × 10−6 4.87 × 10−16 NA 0.088 1.13 × 10−6 0.001 5.13 × 10−10

AUNIP** 1.54 × 10−8 2.70 × 10−7 NA 0.023 3.04 × 10−8 0.170 1
TUBA1B 0.690 9.02 × 10−5 NA 0.647 0.501 0.352 9.48 × 10−7

TREML1* 0.048 3.58 × 10−7 NA 0.010 0.858 0.001 1.41 × 10−5

LoF B3GNT3** 4.40 × 10−9 3.36 × 10−9 NA 4.40 × 10−9 NA NA 0.032
AUNIP** 1.64 × 10−8 2.04 × 10−7 NA 0.024 3.13 × 10−8 0.116 1
CAPN10** 3.60 × 10−7 7.84 × 10−7 NA 0.005 3.75 × 10−6 0.053 0.394

CADD > 20 or 
LoF

GBA1** 2.33 × 10−7 1.20 × 10−14 0.017 0.127 4.56 × 10−7 8.93 × 10−4 7.89 × 10−8

LRRK2 3.46 × 10−6 2.65 × 10−6 0.727 6.15 × 10−7 0.044 0.771 0.014
AUNIP* 2.12 × 10−7 1.53 × 10−6 0.886 0.032 3.15 × 10−8 0.125 1
OR1G1 0.215 6.56 × 10−6 0.848 0.029 0.620 6.58 × 10−7 0.063

AMP-PD = Accelerating Medicines Partnership in Parkinson’s Disease; GNE = Genentech; LoF = loss-o-unction; MAF = minor allele requency; NA = not applicable; NIH =  
National Institutes o Health; UKB = UK Biobank. 

*Denotes genes that pass exome-wide signicance (P < 1 × 10−6) in one meta-analysis. 

**Denotes genes that pass exome-wide signicance (P < 1 × 10−6) in both meta-analyses.
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Supplementary Table 9; or requencies and number o variants or 
each gene, variant class and dataset, see Supplementary Tables 11– 
14). Besides the previously discussed GBA1 and LRRK2, none o 
these genes met exome-wide signicance (P > 1 × 10−6) in our ana-
lysis. However, we did observe sub-signicant association signals 
or LoF or highly deleterious variants in ARSA (P = 8.73 × 10−5) and 
DNAJC6 (P = 8.08 × 10−4; Supplementary Tables 9, 11 and 12). Since 
we did not detect a P-value o interest in PRKN (P = 0.30), which 
has been robustly associated with predominantly early onset PD 
in previous studies, we investigated the enrichment o possible 
homozygous and potentially compound heterozygous PRKN muta-
tions in PD. In the most stringent variant class (LoF or highly dele-
terious variants), we ound a requency o 0.41% in cases and 
0.07% in controls in the combined AMP-PD and NIH dataset 
(Supplementary Table 6). We also did not detect P-values o interest 
in well-established autosomal dominant genes including: VPS35 
(present only in Genentech dataset, nvariants = 4; lowest meta 
P-valuecase-control meta-analysis = 0.235; MAF = 0.001; high condence 
LoF variants; Supplementary Tables 11 and 13), or SNCA (lowest 
meta P-valuecase-proxy-control meta-analysis = 0.274; MAF = 0.001; 
CADD > 20 or LoF variants; Supplementary Tables 11 and 13), 
with mutations in the gene previously associated with an earlier 
onset (<50 years) and more severe orm o PD. This is likely due 
to the very low requency o pathogenic mutations in these genes 
and it is thereore dicult to detect signcant burden test 
signals.

We also attempted to determine whether known PD loci identi-
ed by GWAS present rare variant associations, as has been shown 
previously near SNCA, GBA1, GCH1, VPS13C and LRRK2.6–9 We as-
sessed a total o 82 PD GWAS regions, 78 o which were identied 
in the largest GWAS o Europeans,1 two o which were identied 
in the largest PD GWAS o East Asians2 and two o which were iden-
tied in the largest PD GWAS investigating progression46

(Supplementary Table 10). Looking broadly at each meta-analysis 
group, only two genes, GBA1 and LRRK2, were signicant ater 
Bonerroni correction or 2361 unique genes within 1 megabase o 
known PD loci, suggesting that rare coding variants do not play a 
large role in these GWAS regions but rather that signals are driven
by non-coding variants in these regions.

Discussion
We report the results o rare variant gene burden tests o PD using 
the largest sample size to date, including 7184 PD cases, 6701 proxy 
cases and 51 650 healthy controls. A meta-analysis o gene burden 
results rearms that rare variants in GBA1 and LRRK2 are asso-
ciated with PD risk in individuals with European ancestry. 
However, we also observed several novel PD-associated genes 
(B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1) that 
met exome-wide signicance (P < 1 × 10−6) in our analysis. 
Although these genes were not signicant across all o the datasets 
tested (Supplementary Table 7) and we were unable to replicate the 
associations at exome-wide signicance in independent datasets, 
this may be due to varied power in the dierent datasets due to 
sample size and/or geographical population dierences between 
the datasets that infuence the presence or absence o rare variants 
o interest. We observed the strongest evidence o a novel rare vari-
ant association at B3GNT3, where LoF variants showed a signicant 
meta-analysis P-value (P = 4.40 × 10−9) primarily driven by the 
Genentech (P = 4.40 × 10−9) and UK Biobank (parent proxies P =  
0.032) datasets. Variants meeting this criteria were not present in 
the combined AMP-PD and NIH genomes, requiring additional 

data to conrm association with PD risk. Upon investigation, we 
ound that three LoF variants in B3GNT3 are associated with in-
creased risk o PD. O the our individuals carrying these B3GNT3 
variants in the Genentech dataset, three were PD cases and one 
was a control. The three PD cases reported a amily history o PD, 
which is not uncommon in this cohort and not necessarily indica-
tive o amilial PD (up to 30% sel-report a amily history o PD). 
While these three PD cases reported earlier age at onset than typical 
PD (maniestation in their thirties and below), no enrichment or tre-
mors, gait disturbances, REM sleep disturbances or anosmia were re-
ported. Additionally, no evidence o excess identity-by-descent (IBD) 
between these three PD cases were ound (average k0 = 0.91). These 
variants in B3GNT3 are rare, with three variants driving the association 
in both the Genentech and UK Biobank parent proxies datasets and are 
thereore likely to be absent in the remaining datasets analysed.

Previously suggested PD GWAS loci also harbour rare variants o 
interest, such as SYT11, FGF20 and GCH1.47 We identied no signi-
cant P-values in these genes, consistent with a similar, albeit smal-
ler, analysis perormed in the East Asian population.47 Thereore, it 
is tempting to speculate what the exact mechanism is that under-
lies these PD GWAS loci. While likely that some risk variants will a-
ect gene expression dierences, it is, however, unclear i all risk 
variants contribute to risk via this mechanism.

The vast majority o previously PD-associated genes were not 
nominated by our analysis, including PINK1 and PRKN (PARK2), 
which are the most common genetic cause o early onset PD.48

This is somewhat expected since burden testing algorithms are 
most well-powered to detect dominant and high-risk variants 
such as those in GBA1 and LRRK2 and are less sensitive to recessive 
and ultra-rare mutations. It is also important to note that PD pa-
tients who carry PRKN, PINK1 and SNCA mutations oten have a 
slightly dierent PD phenotype (e.g. earlier onset, varying progres-
sion rates, rapid dementia onset) compared to the general PD popu-
lation.49 Since most PD cases included in this analysis showed 
onset o symptoms in their sixties, it is less likely that they will har-
bour pathogenic PRKN mutations than those with early onset PD 
(Table 1). Additionally, it is also worth noting that certain known 
disease causing variants are extremely rare, or example SNCA
pathogenic missense variants have so ar been identied in ∼25 re-
ports and thereore are likely too rare to be identied in the current 
dataset. It is thereore likely that such mutation carriers are under-
represented in the datasets included in this study.

Immune involvement including adaptive T-lymphocyte re-
sponse in PD is well described and reviewed elsewhere.50 B3GNT3 
encodes an enzyme involved in the synthesis o L-selectin required 
or lymphocyte homing, particularly or rolling o leucocytes on 
endothelial cells, acilitating their migration into infammatory 
sites. TUBA1B encodes the 1B chain o alpha-tubulin, the main con-
stituent o cytoskeleton. Growing evidence suggests the role o 
microtubule deects in progressive neuronal loss in PD.51,52

Alpha-tubulin has previously been shown to aggregate as a result 
o mutations in genes encoding proteins well known to be impli-
cated in PD, including parkin53 and alpha-synuclein.54 TREML1 is 
one o the TREM receptors that are increasingly being implicated 
in neurodegenerative disorders like Alzheimer’s disease, PD and 
multiple sclerosis.55–57 ADH5 encodes or one o the alcohol dehy-
drogenases, which have been studied in the past or association 
with PD risk with conficting results.58–60 There is no clear, discern-
ible connection between known PD biology and the unction o the 
remaining three genes: AUNIP, OR1G1 and CAPN10. Further studies 
providing genetic support and unctional data or these and related 
genes will be necessary to uncover their potential role in PD.
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There are several limitations o this study. First, our analysis 
was restricted to individuals o European ancestry. It is important 
to expand rare variant analyses o PD to non-European populations, 
as well as varying age-at-onset ranges, as more whole genome and 
whole exome sequencing data becomes available. While our ana-
lysis was constrained to assessing our variant classes, we acknow-
ledge that by creating these variant classes we are, in turn, testing 
specic types o mechanisms. For example, in the case o LoF var-
iants, we are assessing mutations that impair protein unction 
and its impact on disease risk, which is a limitation i the disease 
mechanism is gain-o-unction. Although the sample size is large 
compared to previous rare variant analyses o PD, we lack power 
to detect associations in genes where ≤3% o the variants tested 
are putatively unctional or causal, as some rare variant tests weigh 
rarer variants with increased penetrance and eect size dierently 
or not at all (Supplementary Table 5). Since our literature search or 
previously reported rare variant associations was comprehensive 
and not limited to late-onset PD, it is possible that ailure to repli-
cate these associations is due to our analysis ocusing on associa-
tions in late-onset PD compared to controls. Another limitation is, 
since not all the datasets included in the meta-analysis were not 
jointly called rom an alignment o raw reads, it is possible that 
batch eects in sites, sequencing and data processing may bias 
the results. The meta-analysis model o these analyses to leverage 
the power o the datasets without combining them should however 
limit these biases. Further ollow-up o candidate genes via segre-
gation in multiplex amilies or resequencing in large case-control 
datasets, particularly those enriched or early onset and amilial 
cases, is warranted. Additionally, our analysis included parent 
and sibling proxy cases rom the UK Biobank to increase statistical 
power. Although PD proxy cases have shown to be valuable in 
large-scale studies investigating common variants1 and we have 
demonstrated their utility at detecting rare variant associations in 
known PD genes such as GBA1 (Supplementary Table 7), we ac-
knowledge that caution should be used when searching or reces-
sive orms o disease. Finally, the vast majority o PD patients 
included in this study are rom the ‘general’ PD population, o 
which typically less than ∼10% have a positive amily history.
Future rare variant studies will benet rom recruitment eorts 
that prioritize PD patients who are highly suspected to have a 
monogenic orm o disease since these individuals are more likely 
to harbour highly pathogenic or causal mutations that have not 
previously been associated with PD. This strategy is being actively 
used or recruitment o PD patients by the Global Parkinson’s 
Genetics Program (GP2).61

Clinical heterogeneity within PD cases has been well documen-
ted, and urther validation is needed to conrm the pathogenicity o 
rare or ultra-rare variants and their impact on disease.62–64 Analysis 
o rare variants restricted to subtypes o PD may identiy genes im-
portant in PD subtypes but not PD as a whole. Our analysis was also 
restricted to SNVs and small indels, as we did not look at copy num-
ber variants generated by short- or long-read sequencing since we 
did not have access to all raw data to perorm such analyses. Future 
analyses will benet rom including copy number variants which 
have been shown to be important and causal or PD4,65,66 and espe-
cially using o long-read sequencing, as long-read sequencing is 
able to identiy more and more robustly copy number variants in 
comparison to short-read sequencing.67

Overall, we perormed the largest PD genetic burden test to 
date. We identied GBA1 and LRRK2 as two genes harbouring 
rare variants associated with PD and nominated several other 
previously unidentied genes. While we have identied 

mutations in B3GNT3 and TREML1 potentially associated with 
increased risk o PD to be previously linked with neuroinfamma-
tion, urther research into the biological mechanisms are critical 
to conrm the role o these genes in PD. Further replication in lar-
ger datasets that prioritize amilial PD cases and individuals o 
non-European ancestry will provide greater insight into the nomi-
nated genes.
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